Differential Geometry IV: General relativity

G. Moschidis6 Nov. 2024

- 8.1 (a) Let \mathcal{D} be the domain in the Einstein cylinder $(\mathbb{R} \times \mathbb{S}^3, g_E)$, $g_E = -dt^2 + g_{\mathbb{S}^3}$, which is the image of Minkowski spacetime (\mathbb{R}^{3+1}, η) under the conformal map $(u, v) \to (\operatorname{Arctan}(u), \operatorname{Arctan}(v))$ that we saw in class. Let p be a point on future null infinity $\mathcal{I}^+ \subset \partial \mathcal{D}$ and consider the set $C^-(p) \cap \mathcal{D}$ of past null geodesics emanating from p restricted to \mathcal{D} . How does this set look like in the standard Cartesian coordinates of \mathbb{R}^{3+1} ? Deduce that every pair of null geodesics of (\mathbb{R}^{3+1}, η) asymptoting in the future to the same point on \mathcal{I}^+ have to asymptote in the past to the same point on \mathcal{I}^- .
 - (b) Let (\mathcal{M}^{3+1}, g) be a spherically symmetric spacetime without axis, i.e. $\mathcal{M}^{3+1} = \mathcal{U}^{1+1} \times \mathbb{S}^2$ and, in any local coordinates (x^1, x^2) on \mathcal{U} ,

$$g = \tilde{g}_{AB} dx^A dx^B + r^2 g_{\mathbb{S}^2},$$

where \tilde{g} is a Lorentzian metric on \mathcal{U} and $r:\mathcal{U}\to(0,+\infty)$ is a smooth function. The spacetime (\mathcal{U},\tilde{g}) is known as the *Penrose diagram* of (\mathcal{M},g) and can be formally thought of as the projection $\mathcal{U}=\mathcal{M}/SO(3)$. Show that the image $\tilde{\gamma}$ in \mathcal{U} of a causal curve γ in \mathcal{M} is again a causal curve (hence, Penrose diagrams are useful 2-dimensional tools to read-off the causal structure of a 4 dimensional spacetime). In which case is the projection of a null curve in \mathcal{M} again a null curve in \mathcal{U} ?

8.2 (a) Show that the Schwarzschild metric

$$g_M = -\left(1 - \frac{2M}{r}\right)dt^2 + \left(1 - \frac{2M}{r}\right)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$$
 (1)

on $\mathcal{M} = \mathbb{R}_t \times (2M, +\infty)_r \times \mathbb{S}^2$ is indeed a solution of the vacuum Einstein equations.

(b) Show that (\mathcal{M}, g_M) embeds isometrically into $\tilde{\mathcal{M}} = \mathbb{R}_{t^*} \times (0, +\infty)_r \times \mathbb{S}^2$ with

$$g_{\tilde{\mathcal{M}}} = -\left(1 - \frac{2M}{r}\right)(dt^*)^2 + \frac{4M}{r}dt^*dr + \left(1 + \frac{2M}{r}\right)dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$$

(Hint: Use the coordinate transformation $t^* = t + f(r)$ for a suitable f(r).) Show that, in the extended spacetime, the region $\{r \leq 2M\}$ corresponds to a black hole, that is to say, no future directed causal curve starting from $\{r \leq 2M\}$ can end up in the asymptotically region $\{r \gg 1\}$.

8.3 (a) Let $\gamma(s) = (t(s), r(s), \theta(s), \phi(s))$ be a geodesic in the Schwarzschild (exterior) spacetime (\mathcal{M}, g_M) . Show that the geodesic equation takes the form

$$\begin{split} \frac{d}{ds} \Big(\big(1 - \frac{2M}{r} \big) \dot{t} \Big) &= 0, \\ \frac{d}{ds} \Big(\big(1 - \frac{2M}{r} \big)^{-1} \dot{r} \Big) &= \frac{1}{2} \Big(- \frac{2M}{r^2} \dot{t}^2 - \big(1 - \frac{2M}{r} \big)^{-2} \frac{2M}{r^2} \dot{r}^2 + 2r \dot{\theta}^2 + 2r \sin^2 \theta \dot{\phi}^2 \Big), \\ \frac{d}{ds} \Big(r^2 \dot{\theta} \Big) &= \frac{1}{2} r^2 \sin \theta \cos \theta \dot{\phi}^2, \end{split}$$

EPFL- Fall 2024 Series 8

Differential Geometry IV: General relativity

G. Moschidis6 Nov. 2024

$$\frac{d}{ds} \left(r^2 \sin^2 \theta \dot{\phi} \right) = 0.$$

Deduce that one can without loss of generality one can consider geodesics lying in the equatorial plane $\theta = \frac{\pi}{2}$ (by possibly rotating the coordinate system (θ, ϕ) on \mathbb{S}^2 .) Note that, in this case, the first and fourth of the equations above reduce to the statement that the energy E and angular momentum E of a geodesic are constant (i.e. are constants of motion for the geodesic flow).

(b) Show that there exist "trapped" null geodesics orbitting the black hole (i.e. null geodesics that never approach r=2M or $r=\infty$) (Hint: For an appropriately chosen value of $r=r_0>2M$, show that there exist null geodesics with $r(s)=r_0$ for all s.. Contrast this with the situation on Minkowski spacetime.

Remark. The region traced out by trapped null geodesics consists the so-called *photon* sphere of a black hole.

(c) Show that, for any $\mu > 0$, there exist timelike geodesics γ in the Schwarzschild spacetime with $g(\dot{\gamma}, \dot{\gamma}) = -\mu$ which are trapped. (Hint: It might be convenient, instead of working with the second order equations, to use the invariants of the geodesic flow and obtain a relation for \dot{r} and observe that, for an appropriate choice of E, L and r(0), r(s) cannot escape a bounded interval in r.)

Remark. These timelike orbits correspond to massive objects (e.g. planets) moving under the influence of gravity in Schwarzschild spacetime. Unlike the trapped null geodesics, these orbits are stable, namely they remain trapped even under small perturbations of the initial condition r(0) and the conserved quantities E, L, μ (were these trapped orbits not stable, earth would plunge in the sun under small perturbations of its orbit).