EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
Series 8 General relativity 6 Nov. 2024

8.1 (a) Let D be the domain in the Einstein cylinder (RxS?, gg), gg = —dt*>+ gg3, which is the im-
age of Minkowski spacetime (R**1, 1) under the conformal map (u,v) — (Arctan(u), Arctan(v))
that we saw in class. Let p be a point on future null infinity Z+ C 0D and consider the
set C~(p) N D of past null geodesics emanating from p restricted to D. How does this
set look like in the standard Cartesian coordinates of R3*!'? Deduce that every pair of
null geodesics of (R3™! 7)) asymptoting in the future to the same point on Z have to
asymptote in the past to the same point on Z~.

(b) Let (M3*1 g) be a spherically symmetric spacetime without axis, i.e. M3t =11 x 52
and, in any local coordinates (2!, 2%) on U,

g= QAdeAde + rzggz,

where ¢ is a Lorentzian metric on U and r : U — (0,400) is a smooth function. The
spacetime (U, ) is known as the Penrose diagram of (M, g) and can be formally thought
of as the projection Y = M /SO(3). Show that the image 4 in U of a causal curve v in M
is again a causal curve (hence, Penrose diagrams are useful 2-dimensional tools to read-off
the causal structure of a 4 dimensional spacetime). In which case is the projection of a
null curve in M again a null curve in U7

8.2 (a) Show that the Schwarzschild metric

gm = = (1 - %>dt2 + (1 - ﬂ) Tt 1 (d6* + sin” 0d¢?) (1)

r T

on M =R; x (2M, +00), x 5% is indeed a solution of the vacuum Einstein equations.
(b) Show that (M, gar) embeds isometrically into M = Ry x (0, +00), x 52 with

oM\, ., AM . oM .
50 = (1= =)+ = (14 =5 )t 1706 4 sin® 0?)

(Hint: Use the coordinate transformation t* =t + f(r) for a suitable f(r).) Show that, in
the extended spacetime, the region {r < 2M} corresponds to a black hole, that is to say,
no future directed causal curve starting from {r < 2M} can end up in the asymptotically
region {r > 1}.

8.3 (a) Let v(s) = (t(s),r(s),0(s),d(s)) be a geodesic in the Schwarzschild (exterior) spacetime
(M, gar). Show that the geodesic equation takes the form

(- 2hi) <o,

ds r
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4 (rz sin? qu) =0.
ds
Deduce that one can without loss of generality one can consider geodesics lying in the
equatorial plane # = I (by possibly rotating the coordinate system (6, ¢) on S%.) Note
that, in this case, the first and fourth of the equations above reduce to the statement that
the energy E and angular momentum L of a geodesic are constant (i.e. are constants of
motion for the geodesic flow).

Show that there exist “trapped” null geodesics orbitting the black hole (i.e. null geodesics
that never approach r = 2M or r = oo) (Hint: For an appropriately chosen value of
r =19 > 2M, show that there exist null geodesics with r(s) = ro for all s.. Contrast this
with the situation on Minkowski spacetime.

Remark. The region traced out by trapped null geodesics consists the so-called photon
sphere of a black hole.

Show that, for any p > 0, there exist timelike geodesics v in the Schwarzschild spacetime
with ¢g(¥,%) = —u which are trapped. (Hint: It might be convenient, instead of working
with the second order equations, to use the invariants of the geodesic flow and obtain a
relation for i and observe that, for an appropriate choice of E, L and r(0), r(s) cannot
escape a bounded interval in r.)

Remark. These timelike orbits correspond to massive objects (e.g. planets) moving under
the influence of gravity in Schwarzschild spacetime. Unlike the trapped null geodesics,
these orbits are stable, namely they remain trapped even under small perturbations of the
initial condition r(0) and the conserved quantities E, L, u (were these trapped orbits not
stable, earth would plunge in the sun under small perturbations of its orbit).

Page 2



